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Equation 14.2: (1
B1 = (inner product of behavioral dispositions and expectations)
= (inner product of common personality, and situation) + (inner product

of unique personality plus will, and situation)
(R.J.Rummel-The Dynamic Psychological Field)

2
Happiness(t)= n(.+u|Z/’ ICR; +w 2/ 'EV +w Z/"RPF

R.B.Rutledge, N. Skandali, P. Dayan, R.J.Dolan (UCL, London)

A computational and neural model of momentary subjective well-being (PNAS_

2014)



:(779xp1997 A" 2Y0ENRT P2 WR) MITAIWY Wt

2
,I70 9O NIDINNA FTINTR ,NIDIRW-IN SONPIID NRAMP TN LTINS IXIap K - R (1
TP 2IDDNRIT NXIAR NI K T

RBF(x) <O “ '

:sosurface >

a

RBF(x) > 0

NODRNMA FIXPIIDT 0 AN KYN—NIN2VET NTIPI PR NOBORIN 7OXP1 B 290K nX1apd (2
NN

__ 5N n-1
P(2)=2"+8,,Z +..+4Z+8) gy (3

.(*1277 5910) @vas1n 1 oyea




? "2voRN NROXR''a a0

DOYIR91 AR
X +2bx+c =0

X% + 2bXx +b? =b”® —c

(1145 nOPuY ,Mpna N372Y) 7917°R2 NWRIT 1907

N1 R°°17-72 2772K
"nAawnm vt 0"




(795057 219 1800) =nDY WwTs 2vhaan

PLIMPTON 322




2299237 WY N

W 21 N MYEARD 2X° RIXA? :ORTIAND VHWN

FIGURE 3.4
b2

Row e b d No. h

3 [59,0,]15 1,59 2,49 1 2,0

4 [56,56,]58,14,50,6,15 56,7 1,20,25 2 57,36
5 [55,7,]41,1533.45 1.16,41 1,50,49 3 1,200
6 53,10,29,32,52,16 3,31.49 59,1 4 3,450
7 48.,54,1,40 1.5 1,37 5 1,12
8 47,6,41,40 5,19 8,1 6 6,0

9 43,11,56,28,26,40 38,11 59.1 7 45,0
10 41,33,45,14,3.45 13,19 20,49 8 16,0
11 38,33,36.36 8.1 12.49 9 10,0
12 35,10,2,28,27,24,26,40 1,22.41 2,16,1 10 1,48,0
13 33,45 45 1,15 11 1.0
14 29,21,54.2,15 27,59 48,49 12 40,0
15 27,0,3,45 2,41 4,49 13 4,0

16 25.48,51.35,6,40 29.31 53,49 14 45,0
17 23.13.46.4[0] 28 53 15 45

Edited translation of Plimpton 322.
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Among the most beautitul and naturally appealing mathematical objects are the
various plane curves. It is a pity that our undergraduates encounter so few of them.
One extensive class of curves, which played a role in the recent proof of Fermat’s Last
Theorem, is the class of cubic curves, i.e., curves defined by an equation P(x, y) =0,
where P is a polynomial in x and y of total degree three. Famous ancient examples,
which can be explored using simple analytic techniques (see, for example, [8]), are the
folium of Descartes x° + y°® — 3xy = 0, the witch of Maria Agnesi y(1 +x*) =1, the
cissoid of Diocles y*(2 —x) = x?, and the Fermat curve x° +¢° = 1. Using a classical
formula to express the roots of a cubic equation in terms of its coefficients, it is
possible to solve for y in terms of x. The resulting functions are usually not easy to
sketch by hand using standard methods of calculus, but software such as Derive or
Mathematica makes it possible to study cubic curves in a computer laboratory. Such a
study requires knowledge and care, since the packages often use formulas that select
complex branches; hence they can miss certain real branches of the curve.
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Newton studied the general cubic equation in_two variables and classified irre-
ducible cubic curves into 72 different species. Here irreducible means that the
polynomial defining the curve does not factor as a product of lower degree polynomi-
als. For example, the curve defined by x*® —x%y — xy + y = 0 is reducible, since its
defining polynomial factors as (x* —y)(x — y); this curve is the union of a parabola
and a straight line.(In fact, Newton missed 6 species=—according to his classification
scheme (which allows affine coordinate changes), theresaresastotal of 78 species. It
makes a good project in a calculus course to explore the diversity of cubic curves and
to reconsider Newton’s classification. For suggestions on how this might be done
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Asymptotes, Cubic Curves,
and the Projective Plane

JEFFREY NUNEMACHER

Ohio Wesleyan University
Delaware, OH 43015

1. Introduction

Among the most beautiful and naturally appealing mathematical objects are the
various plane curves. It is a pity that our undergraduates encounter so few of them.
One extensive class of curves, which played a role in the recent proof of Fermat’s Last
Theorem, is the class of cubic curves, i.e., curves defined by an equation P(x, y) =0,
where P is a polynomial in x and y of total degree three. Famous ancient examples,
which can be explored using simple analytic techniques (see, for example, [8]), are the
folium of Descartes x> + y3 — 3xy = 0, the witch of Maria Agnesi y(1 + x2) =1, the
cissoid of Diocles y2(2 —x) =2, and the Fermat curve x> + y3 = 1. Using a classical
formula to express the roots of a cubic equation in terms of its coefficients, it is
possible to solve for y in terms of x. The resulting functions are usually not easy to
sketch by hand using standard methods of calculus, but software such as Derive or
Mathematica makes it possible to study cubic curves in a computer laboratory. Such a
study requires knowledge and care, since the packages often use formulas that select
complex branches; hence they can miss certain real branches of the curve.

Newton studied the general cubic equation in two variables and classified irre-
ducible cubic curves into 72 different species. Here irreducible means that the
polynomial defining the curve does not factor as a product of lower degree polynomi-
als. For example, the curve defined by x® —x%y —xy + y* = 0 is reducible, since its
defining polynomial factors as (x* —y)(x — y); this curve is the union of a parabola
and a straight line. In fact, Newton missed 6 species—according to his classification
scheme (which allows affine coordinate changes), there are a total of 78 species. It
makes a good project in a calculus course to explore the diversity of cubic curves and
to reconsider Newton’s classification. For suggestions on how this might be done
making use of both classical algebra and modern technology, see [6].

Newton’s classification begins by studying the asymptotic behavior of cubic curves.
This approach is very natural, since the behavior “at infinity” is a dominant feature of
the shape of any curve. But asymptotes can be far from obvious on a computer-gener-
ated graph. The folium of Descartes x® + y® — 3xy = 0 is shown in Ficure 1 together
with its asymptote x + ¢ + 1 = 0. If the line were not drawn, would you be confident
that the folium has an asymptote, or of the asymptote’s exact location? It is an
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interesting and somewhat nonstandard exercise in calculus to verify that this line is
asymptotic to the folium (see [8], p. 512). How does one find the asymptotes of a
cubic curve or, more generally, of an algebraic curve of degree n? For such curves y
is not given explicitly in terms of x so standard limiting techniques do not apply.

There is a theorem involving only polynomial algebra that almost answers this
question. It provides a set of at most n lines that are the only possible asymptotes,
and these lines will be asymptotic to the curve except in one rare situation. Special
cases of this theorem used to be part of the standard repertoire of mathematical
techniques that students learned when studying analytic geometry or the theory of
equations. Fashions change, however, and this result is now encountered only in
algebraic geometry, if at all. One reason for its disappearance is the unfortunate
decline in interest and knowledge of geometry in high school and college. Another lies
in the fact that the natural domain for thinking about asymptotes is the projective
plane, which is often not studied at the undergraduate level. A third is that complica-
tions result from looking only at the real portion of an algebraic curve, which is best
viewed as an object in complex space. In this article we present this theorem with
some background in projective geometry and apply it to study cubic curves.

The theorem specifying the asymptotes of an algebraic curve is not easy to locate in
current references, although at one time it must have been well known. A special case
occurs explicitly in [7], pp. 8-10, but I have been unable to locate the general case in
any reference. The nonsingular case of the theorem is treated nicely in [2]. An
approach to finding asymptotes using only calculus can be found in [5], where it is
applied to study various examples but not to find a theorem yielding all asymptotes.
Classical methods and many examples with beautiful hand-drawn graphs can be found
in [3]. Good modern references for many concrete facts in elementary algebraic
geometry (but not this one!) are [1] and [4].

2. Statement of the theorem and applications

In this paper asymptote always refers to a line that is approached by points (x, ) on a
branch of a curve as x or y becomes unbounded. This is the kind of asymptote
encountered in a calculus course, but there it is almost always horizontal or vertical. A
degenerate case, which we shall exclude from now on, occurs when the curve contains
a line as a component, i.e., when the asymptote is actually part of the curve. Thus, in
what follows, we assume that the defining polynomial P(x, y) does not vanish
identically on any line. The term asymptotic direction refers to a vector parallel to
such a line so, in particular, the location of the line in the plane is not specified.
The following theorem specifies at most n candidate lines to be real asymptotes to a
curve defined by P(x, y) =0, where P(x, y) is a polynomial of total degree n in the
variables x and y. Such a curve is called an (affine) algebraic curve of degree n. Let
us denote by P,(x, y) the sum of all terms occurring in P(x, y) of total degree k.
Then P(x,y) can be expressed as Lj_,Pi(x, y). The polynomials P, (x,y) are
homogeneous of degree k; this means that, for any scalar A, we have Pi(Ax, Ay) =
A*P(x, y). Polynomials such as P,(x, y), which are homogeneous of some degree k,
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factors of p;(u). When u is replaced by y/x, this term gives rise to the factor ax + by
of P(x,y). If bu+a occurs to exact multiplicity m as a factor of py(u), then
Pi(x, y) can be expressed as (ax +by)"Q(x, y), where Q(x, y) is a homogeneous
polynomial of degree k —m with Q(b, —a) # 0.

MAIN THEOREM. Suppose that ax + by is a factor of the top degree form P,(x, y) of
multiplicity m with a and b real. Let r <m denote the largest integer with the
property that there exist polynomials Q(x,y) for n —r+1<j<n satisfying the
conditions:

P(x,y) = (ax+by) Q,(x,y), B, 1(x,y) = (ax +by) ' Q, 1(x,y), (A)
vt ‘mdﬁnally Pn—r+l(x’ y) = (ax +by)Qn—r+l(x’ y)

Then associated with the factor ax + by is a set of at most r possible asymptotes
ax +by =t,, where t, is a real root of the equation

t"Qu(b, —a) +t"71Q,_1(b, —a) + -+ +1Q,_,4, (b, —a) + P,_,(b, —a) = 0. (B)

All real asymptotes to the curve defined by P(x, y) =0 arise in this way as ax + by
ranges over the real linear factors of P(x,y). If r>1 it may happen that some of
these lines are spurious asymptotes.

B g

Equation (B) has at most r roots, which may be complex or have multiplicity
greater than one. Since r < m, the multiplicity of ax + by as a factor of P(x, y), the
total number of possible asymptotes cannot exceed n. There is an actual asymptote
associated with the factor ax +by for each distinct real root except in the case
discussed below.

The candidate asymptotes thus satisfy the equation

(ax +by) Q. (b, —a) + (ax +by) "' Q,_ (b, —a) + -
+(ax+by)Qn—r+l(b’_a)+Pn—r(b’_a)=0' (C)

Condition (A) is a divisibility condition requiring that descending powers of ax + by
must be factors of the top r forms P,(x,y). Since r is the largest such integer,
ax + by does not further divide P, _;(x, y) or Q;(x, y) for some k between n —r + 1
and n, ie., P,_, (b, —a) or at least one of these Q,(b, —a)’s is nonzero. The most
common situation is covered by the following simpler result in which the candidate
line is guaranteed to be an asymptote. It is a special case of the Main Theorem.

COROLLARY. If ax +by is a simple factor of P(x,y), i.e., if P(x,y)=
(ax +by)Q,(x, y) with Q (b, —a) # 0, then associated with this factor is the single
asymptote to P(x, y) =0 defined by the equation

(ax +by)Q, (b, —a) +P,_ (b, —a) =0. (D)
We give some examples of the application of this theorem and its corollary.

Example 1. For the folium of Descartes x° + y® — 3xy = 0, which is displayed in
Ficure 1, the sole real linear factor of Py(x, y) =2 +y* is x +y with Q4(x, y) =
x*—ay +y* Here we have r=m =1 with a=b =1 and Py(x, y) = —3xy. Thus
the single asymptote is given by (D), namely, (x +y)Q5(1, —1) + P,(1, —1) =0, i.e.,
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7.5

~7..'l5
FIGURE 2

limitation of computer graphics is illustrated well by this figure. While the rightmost
branch of this curve appears to be asymptotic to the line x +y = 2.5 from above, a
more careful analysis shows that the curve actually crosses the line at the point (2.5, 0)
and is then asymptotic from below. This crossing becomes evident in the graph only
with a tenfold increase in scale, so it would not be noticed unless it was deliberately
sought.

Example 3. The quartic curve defined by (x® —x)y =1 can be analyzed com-
pletely using techniques of calculus, since it is easy to solve for y in terms of x. But
our theorem applies as well, with the following results. Here P,(x, y) =x%y, so the
factor x has multiplicity three. Also x* divides P;(x, y) = 0 and x divides Py(x, y) =
—xy, so r=3 with @ = 1 and b = 0. From (B) we obtain the equation ¢*(—1) + ¢2(0)
+t()+0=0, ie, —t*+¢=0. Solving this equation yields the three parallel
candidate asymptotes x =0, x + 1, and x — 1 =0, which can easily be verified to be
true asymptotes using limits. The other factor of P,(x, y) =x%y is y with multiplicity
m = 1. Equation (D) now gives y = 0 as the only other asymptote. Thus this curve has
three asymptotes in the direction {0, 1) and one in the direction (1, 0).

Example 4. Consider the parabola x® —y =0, which we know has no asymptotes
from basic analytic geometry. The factor x has multiplicity two in Py(x, y) = x>, but
x does not divide P\(x, y) = —y. Thus r=1 with a =1 and b = 0. We obtain from
(C) the equation x(0) — 1 = 0. This linear equation does not describe a line, so we
confirm there are no (finite) asymptotes to the parabola.

Example 5. Finally, let us analyze the curve x?y® —y®+1=0. It is easy to solve
this equation for y in terms of x. We find that the curve is the union of the graphs of

the two functions f.(x)= +1/V1 —x2. Thus. using limits. we see that there are
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FIGURE 3

shows that the lines provided by the theorem may not be asymptotes if no real branch
of the curve approaches them. We shall explore this situation in more detail below.

The conclusions of the theorem become simpler and more pleasing if we move to a
space larger than R2. If we allow @ and b to be complex numbers, equations (B) and
(D) give a criterion for complex asymptotes, which are two-dimensional real planes in
C? (see [3], p. 44). For instance, the circle x> +y®>=1has x +iy=0and x —iy =0
as complex asymptotes in the four-dimensional space C?, but these planes intersect
the real plane R? only at the origin. A different extension is relevant in the situation of
Example 4. There the asymptotic equation does not describe a real line. A line is
actually present, but it is the line at infinity in the projective plane RP? (which
contains R*). We shall return to this situation below when the necessary definitions
have been made. A combination of these two extensions is necessary to explain
Example 5. In a suitable space there are always exactly n asymptotes, if we interpret
“asymptote” correctly and assign multiplicities to asymptotes ax + by =t, according
to the number of times that ¢, occurs as a root when (B) is factored over C. In R?,
however, n provides only an upper bound for the number of finite real asymptotes.

For cubic curves, therefore, there can be no more than three asymptotes. In fact,
cubic curves exist with 0, 1, 2, or 3 real asymptotes. The curve yx(x —1)=1 has
three asymptotes; yx® = 1 has two; the folium of Descartes has one, as we saw above;
and the polynomial y =x? has no finite asymptotes.

Notice that for a curve P(x, y) =0 of degree n the possible asymptotic directions
(b, —a) are defined by the factors ax + by of the top degree term P (x, y). It is
intuitively reasonable that the dominant term should determine the behavior of the
curve at infinity, i.e., the asymptotic directions. However, where the asymptotes are
situated in the plane is dependent on some of the lower order terms. In the case of a
simple factor ax + by only the next term P,_,(x, y) is relevant. This is the nonsingu-
lar case (in a sense to be defined below). For a factor of higher multiplicity m > 1, the
next r terms in the homogeneous expansion are relevant to the asymptotic behavior,
where r is defined by the theorem but is always bounded above by m.
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including points at infinity. In addition to simplifying the hunt for asymptotes, the
addition of points at infinity to R? to form the projective plane RPP? has various other
benefits. Newton’s original classification of irreducible cubic curves into 72 species
was criticized by later authors as being too complicated to be useful. By regarding the
curve as lying in the projective plane and enlarging the group of allowable coordinate
changes to include all projective transformations, it can be simplified into a classifica-
tion containing just 5 different species. The points at infinity, which are sometimes
called ideal points, are rather intuitive—we simply introduce one additional point at
which all parallel lines in a given direction meet. Thus railroad tracks meet at the
horizon, but perhaps less intuitively, they meet at the same point in both directions.
This point is specified by any nonzero vector {m, n) parallel to the line. Notice that
for points satisfying ax +by +c¢ =0 with x or y large, only the ratio of a to b is
important, rather than @, b, or ¢. This ratio is the information that a direction vector
{m, n) contains.

There is a clean algebraic way to add points at infinity to R*. We consider the set of
all 3-tuples (X,Y, Z) with real coordinates not all zero, and define an equivalence
relation: (X,,Y,,Z,) ~ (X,,Y,, Z,) if each triple is a scalar multiple of the other.
These equivalence classes are defined to be the points in the real projective plane
RP?. If the Z-coordinate of the 3-tuple (X, Y, Z) is nonzero, we may divide by it and
obtain the equivalent 3-tuple (X/Z,Y/Z, 1), which we identify with the Euclidean
point (x, ), where x = X/Z and y =Y /Z. Only when Z = 0 is this not possible, and
it is these points which are the points at infinity. Notice that on the line ax + by + ¢ =0
the points escape to infinity as Z approaches 0, so the condition Z = 0 for the line at
infinity is quite natural. Any nonzero vector {x, y) has exactly one point (x, y,0)
associated with it, which we regard as the point at infinity in this direction. An
ordinary point (x, y) in R? is identified with the point given by the class containing
the 3-tuple (x, y, 1) in RP2.

This algebraic construction of RP* has a simple geometric realization. Consider the
closed upper unit hemisphere H in R® and a plane T tangent to it at the north pole.
(See Ficure 4.) Each equivalence class of 3-tuples (X, Y, Z) in RP? when Z # 0 has a

FIGURE 4

unique representative in H, obtained by dividing all components by VX?* + Y2 + Z*
and multiplying by —1 (f necessary) to make the third component positive. When
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compatible with the equivalence relation ~ , i.e., each point P of T projects to a
unique point P’ on the open upper hemisphere contained in H.

Each line L in T projects to a great semi-circle in H which meets B in two
antipodal points, which are identified as a single point in RP2. We regard this single
point as the point at infinity on L. Lines parallel to L project to great semi-circles
which meet at the same antipodal points on B; thus any two parallel lines meet at a
single ideal point in RPP%. Curves in T that are asymptotic to a line L approach the
curve at infinity, i.e., they are tangent to the corresponding great semi-circle in H at
the point at infinity which lies on it. There is an exceptional case that occurs when
the tangent circle is the boundary circle B, which is not the image of any finite line
in T. B consists of all points at infinity, so a curve in T whose projection is tangent to
B at a point of B has no real asymptote. This happens, for instance, for the parabola
y=x> as we shall see below. Thus we have a nice geometric criterion to detect
asymptotes to curves: a curve has a real asymptote if and only if its image in H is
tangent at a point of B to a great semicircle different from B.

The extended space RP? is in many ways superior to the Euclidean plane R?. It
has a natural topology, which is obtained by forming the quotient of R*® under the
equivalence relation defined above. We obtain this same topology if we form the
quotient space of H under the identification of the antipodal points of the boundary
circle B. This second approach makes it clear that RP? is compact, since it is the
continuous image of the compact hemisphere H under the identification map. Each
point in RP? has a two-dimensional Euclidean neighborhood. This is obvious for all
points that are images of the open upper hemisphere in H and is true for the points
on B as well, either by noticing that the identification glues together two half discs to
create a full Euclidean disc surrounding each such point, or by noticing that in the R3
construction of RP? all points are created equal, so those points that are images of
points on B cannot be topologically different from the other points.

The nonsingular linear transformations of R® respect the defining equivalence
relation, so they define a group of homeomorphisms of RP2. This group is transitive,
since there is such a transformation mapping any nonzero point of R® onto any other
nonzero point. This transitivity make RP? into a homogeneous space. For later work
observe that these linear transformations are differentiable with nonvanishing Jaco-
bian, since they are nonsingular. Thus they preserve the tangency of curves (even
though they may change the angles at which nontangent curves meet). To establish
the theorem specifying asymptotes, we shall use such a linear transformation to map a
point at infinity to the origin, where calculations are more familiar. Finally, as noted
above, the Euclidean plane R? sits naturally in RP? as those classes of 3-tuples
containing a representative with Z coordinate equal to 1. In summary, RP? is a
homogeneous compact manifold in which R? is naturally embedded.

Any curve in R* defined by a polynomial equation P(x, y) = 0 of degree n extends
naturally to a curve in RP? as follows. Replace x by X/Z and y by Y/Z and multiply
the entire equation by Z" to clear the fractions. This procedure produces a homoge-
neous polynomial in the three variables X, Y, and Z. The resulting equation defines a
curve in RP2, since a homogeneous polynomial has the same zero value at all scalar
multiples of any 3-tuple at which it vanishes. For points with Z # 0 it restricts to the
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by the addition of the single point (b, —a,0) at infinity. If @ =b = 0 the line consists
entirely of points at infinity and is called the line at infinity.

Our basic problem is to determine all the asymptotes to a general algebraic curve.
As noted above, these are the finite lines that are tangent to the curve at a point of
infinity in RP°%. For algebraic curves there is an algebraic way to identify such tangent
lines. It is based on the idea that a line is tangent to an algebraic curve at a finite point
if it has higher “order of contact” at the point than do “generic” lines through the
point. When the point is the origin and the curve is defined by a polynomial
P(x,y) =0 with P(x,y)=2X}_, P(x, y) as in Section 2 (here we may start the
summation at k =1 since P(0,0) = 0), the order of contact with a line is the least k
for which P(x, y) does not vanish identically on the line. Let [ denote this order of
contact. Since Pj(x, y) is a form of degree [, at most [ distinct lines will have order of
contact greater than [, and all others will have order of contact [ with the curve. The
former set we declare to be the (algebraic) tangent lines to the curve at the origin.
This approach is simple algebraically and allows us also to cope with curves that are
singular at the origin.

To see the connection with the more familiar approach to tangent lines in calculus,
notice that P,(x,y) is the [th degree Taylor expansion of P(x, y) at (0,0). When
[ =1 the curve is said to be nonsingular at (0,0); otherwise it is singular there. In the
nonsingular case let us compute y' at (0,0) using implicit differentiation. Let
P\(x, y) = ax + by. Then we obtain 0=P,+ P, y' =a+by’ + terms that evaluate to
0 at (0, 0) because of the presence of x or y in the term. Thus y' = —a/b, so there
is a unique tangent line at (0,0) given by y = —ax/b, ie., by P(x, y)=0. This
argument justifies this method of finding tangent lines in the nonsingular case. For a
discussion of the singular case see [3], pp. 22-24. In this situation the algebraic
concept of tangent line does not always agree with our geometric one (because of the
artificial restriction that we are looking only at the real portion of our curves). For
example, the curve x?y%=x*+y? algebraically has the x-axis (y® = 0) as a tangent
line at the origin, but the curve has the origin as an isolated point on the real graph,
since x*y* > y* implies that x* > 1 unless y = 0 and the only point on the curve with
y =0 is the origin.

As asymptotes for real algebraic curves, we are interested in lines that are real,
i.e., we work in RP? and not in the corresponding complex projective space CP?, and
in lines that are finite, i.e., not the line at infinity, Z = 0. The latter restriction explains
the phenomenon that occurred in Example 4 above. It may happen in (B) that all the
coefficients Q(b, —a) =0 while P,_ (b, —a) # 0. In this situation there is no finite
asymptote in the direction (b, —a). If we projectivize the picture, this situation gives
rise to the equation P,_, (b, —a)Z" = 0, which does define a line in RP°?, namely, the
line at infinity. So there is an asymptote in this case, just not a finite asymptote. This
is the situation for all curves defined by y = p(x), where p(x) is a polynomial in x of
degree greater than one. All such curves have the line at infinity as their only (ideal)
asymptote.

We are now in a position to understand what happens in Example 5 above. As
noted above, the curve x?y? =x* + y? has the origin as an isolated point, which gives

> " | ° . . . > 1 . . . . ea 1 kS 1 N r 9

X 3 e
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at the entire curve in CP?, is there no portion of the real curve abutting onto the line
that our method has identified. The fact that such candidate lines are not asymptotic
will be evident from a machine-drawn graph.

4. Proof of the theorem

Consider now an algebraic curve P(x,y) =0 of degree n, where the polynomial
P(x, y) is expressed as a sum of forms P(x, y) = L}_, P(x, y). Puttmg this equation
into homogeneous coordinates, we obtain the equation

F(X,Y,Z)=P(X,Y)+ZP,_,(X,Y) +Z%P, y(X,Y) + -+ +Z"Py(X,Y) =0

which extends the affine curve to a projective curve in RP2. The extended curve,
which we shall denote by A, contains points at infinity (X,Y,0) precisely when
F(X,Y,0)=0, i.e., when P(X,Y)=0. This occurs in those at most n directions
(b, —a) for which ax + by is a real linear factor of P,(x, y). We must now determine
which of these directions yield lines in R? that are possibly tangent to the curve at a
point of infinity.

Let us fix a particular factor ax +by of P(x,y) to analyze. Without loss of
generality we may assume that b is nonzero (since either a or b is nonzero). We
shall use a linear transformation to map the point at infinity [b, —a,0] to [0,0, 1].
This will enable us to do our calculations at the origin. Consider the transformation
T: RP?2 - RP? defined by T[X,Y,Z]=[bZ, —aZ+Y, X]. This transformation is
invertible, with inverse T~'[ X, Y, Z] = [bZ, bY + aX,X], and takes the origin [0,0,1]
of the affine plane to the point at infinity [b, —a, 0]. This formula for the inverse was
obtained by inverting the corresponding matrix and using homogeneity to simplify
the expression. It is easy to check that T7' o T[X,Y, Z]=[bX,bY,bZ] ~[X,Y, Z].
The curve A defined by F[X,Y, Z] =0 then “pulls back” under T to an associated
curve A’ defined by F(T[X,Y, Z]) = F[bZ, —aZ + Y, X]= 0. In terms of the homo-
geneous components of P(X,Y,Z), the curve A’ is defined by the equation
P _.(bZ,—aZ+Y)X)=0. With r defined as in the statement of the theorem, we

n—j
have

B (bZ, —aZ+Y)=(bY) 2 Q, (bZ, —aZ+Y) dor F=0,L,...,7

n—j
(where for simplicity we have set Q ). Our equation for A’ now takes

the form

|~y equal to | e 4

‘_i(bY)r_jQ,,_j(bZ —aZ+Y) X + 2 P, ,(bZ,—aZ+Y)X/=0

J=r+l

To study the tangents at the origin [0,0,1] of A’, we set Z=1, X=x,and Y=y to
obtain the restriction of the curve to the affine plane R?. This yields the equation

Y (by) 7Q, (b, —a+y)x/+ ¥ P,_(b,—a+y)x/=

j=0 j=r+1
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equation is given by
L(x,y) = X (by) 7 x/Q,_;(b, —a). (E)
j=0

The tangent lines to A’ at the origin are the solutions to the equation L(x, y) = 0.

To find the tangent lines to our original curve A at the point at infinity [b, —a, 0],
we extend this equation to RP? and pull back using T, Notice that we are using the
fact that T and T7! preserve tangency of curves. Since L is homogeneous, the
extension to RP? is given by

H(XY.Z)= ¥ (bY) 7 XIQ,_ (b, —a) =0.
j=0

Under T7! this equation pulls back to the equation

0=H(T '[X,Y,Z])=H[bZ,bY +aX, X]

= Z (b(bY +aX)) 7 (b2)’Q,_;(b, —a)

j=0

= Z (aX+bY)r7ijQn—j(b’ _a).

j=0

Since b is nonzero, this is equivalent to the equation

(b, —a)=0.

n—j

Y (aX+bY) 7710
j=0

Setting Z=1, X =x, and Y =y, we obtain EJLO(ax +by)IQ, _i(b, —a) =0, which
specifies the lines in the direction (b, —a) possibly asymptotic to the curve A. This

equation is identical to (C) in the statement of the theorem.

Remarks. The ideas in [5] can be developed to yield a proof of the Main Theorem
which is based entirely on limits and avoids the projective plane. But this route is
somewhat circuitous, and does not emphasize the geometric interpretation of an
asymptote as a line that is tangent to a curve at infinity. It is also possible to establish
the Main Theorem by using an appropriate version of Taylor’s theorem at the point at
infinity [b, —a,0]. This avoids the transformation T but introduces its own complica-
tions. The argument using T is essentially just linear algebra, and was suggested by
one of the referees.

Acknowledgment. The author wishes to thank both referees for their careful reading and helpful
comments, which resulted in a much improved paper.

REFERENCES

1. Egbert Brieskorn and Horst Knorrer, Plane Algebraic Curves, Birkhiduser Verlag, Boston, MA, 1986.
2. Julian Lowell Coolidge, A Treatise on Algebraic Plane Curves, Clarendon Press, Oxford, UK, 1931.



Z90DNR NNINAY 1IWI% NV NANSINENRT U

f eC2(1) | = (a, f)

(YOP2 XPNDI YW AT 0ORT DT T D °0anh) (NIRRT NITITT NAvenn

rel pmomon e F(r) =0 (x

f'(x)>0, xel (2

1 Ay =f(x)
(X, 1(%e))

1) o |

(%, 1(.)) ]
Root / / /
__of f(x)\ }( l ‘/"

3 t+ X
X, Xo




PTHY TITo TN X €1 onn wswn

F(x,)
[ X =T<0 oxwp 650 op omx “ra =X~y =012

19-%¥ 0™ X c(r=5,r+8) <l myvpm 200 073 7910 797707
lim x. =r

n—oo

‘99237 0
X% —2
2X

f(X)=x*-2=>X_,=X —

I




)/,\

7 y=ae
“ (%, (%))
x, (<)
offoa . a? |/ / |
lim x,=r
dxis=hhi
en+1:Xn+1_r=Xn_r_ |( n): n (r:) (n)

€
n

0= £(1)= 1l )= 1(x)-8, )+ € (L)

2IOP TIPS K —~
] i o4 T I — (%)

X, I

n?




n1012n7)

[<le k< 5|
PXPITIRD

e _enfl(xn)_f(xn)_lez f”(tn)
" ' (x,) 2" f'(x,)
K _min [T°(X)]

{K_maXIf"(x)I’ xelr-nr+nlcl

n+1 2k n

|2

(NXMON APNY)

Ko

.—<1 :35<77

k

|e

1
n+1 |Szlen |

(N2




110173 NV 2V "EROIRN ROR IR 72100 X100 0OWA

F)=y ,  y=b Fa)yb
x+F'(@)™* (F(x)-y)=x
Xn+1:Xn'F'(a)-1(F(Xn)-y)

Xn+2'Xn+1:(Xn+1'Xn)'Fl(a)_l(F(Xnﬂ_)'F(Xn))




15w5H 77190 O YW




?2"555 7172" DIINN AV AR RPN N1 IORY
(DIPTRINT NV -NOWINY TRUANMA TI9°1 IRD)

21555 797" DIDNN WA ANT L2990 NI IN°DOXO0 N IYRY

12972919998 9 PRweYn

__d d-1
P(2)=7" +84,47 " +..+&Z+8y ;nmemm mpos
IV W ANINMIADNT

Zo, =12, — pl(zn) ,n=012,...
p'(z,)

‘3w= im z. = p(w) =O|




T SW 779007

s S S
) = gy XY

LR N e | T o
e e
{ *?- VQ\:-_‘ » ~ = 3
> O _ o
ey e
7 Xy

—

@y = [T v T3 X172 14X 1 72 )




P(a)=0 :058 N7 o BN

N NTIPI YT IR
N, (o) =«

92107°377 aNMNONT

Sk P(2)=(z-a)" ar ,nena

I\I.p(w):|o(z)|c>”2(z)_| _m-1
p'(2)” |, m

:(5%9 2199199 1121 137) NXNON PNV

zeU,=Ilim N "(2) =«

N—>o0

- 12 a 5w YU, 52030 nn»p :H1pon




(AmMnD ). @ w mo1onaa ax nxaps CONV(@) = U1 Ny (U,)

a2 0TAT

p(z)=2"-1




T b
- &

4o

Ain ) 5. . -

& T p - 4 eopp

" /,\ /,\ / ’ o
-~ o .

57 570

’







— z— [

W =
0,0{ my7y93% [ B ny7imam AR mvapn 7 o SIPNYITT STIYY
STTOON DADRAD 70192 TIINMT W7 NRY IANRNTR

" :( Cayley) uswn
laN, @) =w?| s wea@=2L | p@)=(z-a)z-p)a%p

L—a 2

JIURART TIR' MITIRID ¥ND SRRNT NTIRPI DO D150 Y1 DNINIADNT

N,(@D)-B (z-pY 2’ —af
9N, (2)) = N,(2)-«a _(Ej N, (2) = 22_(050113) QAW 70007

W

n+1 STUIRDST ST DR DaAPR anIIAYRT 199

SBIRTINNIN INRI IO DAYIR—NNIT NoYn




(S 11" 7M7) NORIPT NIYH

P(2) .
T(z):@, P,Q polynomials AN =T

SHIPET BTIDIRITIR KT T 55 9AN]

:ak keN 9wmnea T 5w (Sink) qwim 7P1% RIT ¢ 9D %K1 3970

@) =a, |(T*)(a)1]

zeU_ =Im (T)"(2) =«

-w 70 « 5w Y, 72030 np :a1pon




KeN amna T 5w quin 79w Xy e , K>1ox :upwn

zeU, by stx mara nr Q=1a, T(@), ... T 2 (@)} mmipam

.Q M7IP1 95 IR NITARa Mpan” @) onn

TOR ANINAINT 7AW STIVP 772920 NRYP DIVIDT PR WY P55 92 119K 02057
.21on°
: U 77minn 773020 mawow T 292119910 2199 D272 K37 IND 71yus 199

U ﬂ{ UCONV(a)} =@

a.p(x)=0




P(2) =

N |

7> — 7

I RMT

F (>

=0 ST EF e+ 1




"ESYYIA B3A1399ID" NINXBTD NINANDT

""Hbo 72" DIDNR R WIVINLT DNINNENRT 2TV 29AIDID 70T QIR AN
2(7°¥5 J213)

DDA 2ORIIWID ARDRA TITA
:pd1={p(z) =2'+a, 2 " +..+ay, |3 KL 0<j<d —1}

:avpnn Plo-2 e may
Cauchy: Plg)=0=¢eD,={weC,|w[<2}




? aNT ( Smale 1985 ) aming oova
:( Smale 1985 ) mwwwa




2R PRMW HOw 4< 970n 219918 p(X) o (Barna 1956 ) wown
-2 NYRWRM RN NTIPI o9 DIDNM 1IVIALT 2NINMAYRT TN LNIAT2 2
VIR NXRRD npaaRat K ks R\K

19D NIYTS NANTIARR DY B 73IanD IO S1IWYNIT an s IabNg
<2397 NIIDNY SDOWANA' 192 DD TT Y1aAND

LOTWWRT 2IATND DD P10
ST TRaaun I

(95772 5199718 2TIDDIY) 29PNAVIMN DR AN 2N



NEWTON’S METHOD IN PRACTICE: FINDING ALL ROOTS OF
POLYNOMIALS OF DEGREE ONE MILLION EFFICIENTLY

DIER SCHLEICHER AND RO IN STOLL

Abstract. We use Newilon’s method (o find all roots of several polynomials in
one complex ariable of degree up to and exceeding one million and sho that
the method applied to appropriately chosen starting points can be turned into
an algorithm that can be applicd routinely Lo lind all roaots without deflation
and ith the inherent numerical stability of Ne ton’s method.

We specity an algorithm that provably terminates and finds all roots of
any polynomial of arbitrary degree pro ided all roots are distinct and exact
computation is a ailable. It is kno n that Ne ton’s method is inherently
stable so computing errors do not accumulate e pro ide an exact bound on
how much numerical precision is sufficient.

1. Introduction

1508.02935v1 [math.NA] 12 Aug 2015

arXiv

Figure 1. The dynamics of Ne ton’s method for a polynomial of
degree 12, Different colors indicate starting points that converge
to different roots, and different shades of color indicate the speed
of con ergence to that root.

Finding roots of equations especially polynomial equations is one of the oldest
tasks in mathematics sol ing any equation f x g x; means finding roots of (f —
g x . This task is of fundamental importance in modern computer algebra systems
as ell as for geometric modelling. Ne ton’s method as the name indicates is one
of the oldest methods for approximating roots of smooth maps and in many cases
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Von Neumann: “The language of the brain not the

language of Mathematics...the nervous system is
based on two types of communications: those which do
not involve arithmetical formalisms...(logical ones)
and communications of numbers (arithmetical ones).

It is only proper to realize that language is largely a
historical accident...It is only reasonable to assume
that logics and mathematics are similarly historical,
accidental forms of expression... Indeed, the nature of
the central nervous system and of the message
systems... indicate positively that this is so.”
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